
Considerations for the Transformation of STEP

Physical Files

Robert Kohout

edited by Stephen Clark

July 12, 1993

A Note from the Editor: The work described was performed by

Robert Kohout in the summer of 1990, at which time this paper was

drafted. Due to renewed interest in the problem, it seems appropri-

ate to release this heretofore unpublished work so that others may

refer to it. To this end, I have performed my editorial duties, in

truth passing the paper on much as I found it. The entire technical

content is due to Mr. Kohout; editorial errors are, of course, solely

mine.

1 Introduction

The emerging Standard for the Exchange of Product Model Data, 1 commonly

referred to as STEP, is an international standardization e�ort which addresses

the need to share data in a complex computer environment. STEP will consist

of three primary components of interest to the present work: an information

modeling language called EXPRESS [SPIB]; a set of information models spec-

i�ed in EXPRESS which de�ne a class of information to be exchanged among

STEP-based applications; and an exchange �le syntax which allows data con-

forming to an EXPRESS information model to be exchanged between applica-

tions [VANM]. In the future, there will be other implementation forms as well,

such as a functional interface to a persistent database form [FOWL]. The vari-

ous information models, however, remain independent of these implementation

forms.

PDES (Product Data Exchange using STEP) is the name given to the United

States' activity in support of the development of STEP. As a part of this activ-

1The Standard for the Exchange of ProductModel Data (STEP) is a project of the Interna-
tional Organization for Standardization (ISO) Technical Committee on Industrial Automation
Systems (TC184) Subcommittee on Industrial Data and Global Manufacturing Programming

Languages (SC4). For an overview of the standard refer to Part 1: Overview and Fundamental

Principles [MASO].

1

ity, the National PDES Testbed has been established at the National Institute

of Standards and Technology 2. The Testbed's mission is to accelerate the devel-

opment of STEP and to act as a resource for US industry in the validation and

conformance testing of STEP. The Testbed develops and maintains software for

the validation and testing of STEP, as well as serving as a repository of PDES

and STEP documents.

Because the software environment at the Testbed deals with the testing and

validation of an emerging standard, it must be able to accomodate changes

to various parts of the speci�cation. To this end, the software architecture

is quite modular [CLAR, MORR]. An embeddable EXPRESS parser, Fed-X

[LIBE], isolates programs from the syntactic details of EXPRESS. In addition,

it allows most of the rest of the Testbed software to be written in a generic,

schema-independent fashion. Thus, for example, database loaders �rst read an

EXPRESS schema before attempting to interpret any STEP physical �les.

An additional problem in this environment of a constantly changing speci�-

cation is that of keeping test data up-to-date with respect to changing schemas.

Whenever a change is made to a conceptual model, the possible need to change

existing data instantiations based on the old model arises. This document dis-

cusses some of the salient issues involved in automating the translation of such

data. In general, a change in the underlying model will motivate a change in

any existing form of data representation. In the Testbed environment, this cur-

rently implies changes in relational databases, STEP physical �les, and memory-

resident working form representations. For the purposes of this discussion, we

will concentrate on the physical �le, as this is the only exchange form to be

included in STEP Version 1.0. Each method of data instantiation has its own

nuances; however, for the most part the issues we discuss apply more or less

equally well to each.

2 Motivations for Change

We can identify three major classes of changes to parts of STEP which may

have an impact on the validity of existing physical �les. In descending order of

their (apparent) relative frequency, these are

� Changes to the Conceptual Model. These changes are typically made

by a standards committee and are due only to design considerations with

respect to the model itself.

� Changes to the EXPRESS Language. Since the STEP models are

de�ned using EXPRESS, a change in either the syntax or semantics of the

language may necessitate a change in the model itself.

2Funding for the Testbed has been provided by the Computer-Aided Acquisition and Lo-
gistic Support (CALS) program of the O�ce of the Secretary of Defense. The work described

is funded by the United States Government and is not subject to copyright.

2

� Changes to the Physical File Speci�cation. If the formal speci�-

cation of the STEP physical �le format changes, existing �les must be

modi�ed to reect this change.

These distinctions are somewhat arti�cial. For example, changes in the

model due to changes in EXPRESS may be thought of as a special case of the

�rst category. A naive approach to detecting changes in the conceptual model

that simply compared one version of the model to another and attempted to

determine the di�erences does not neccesarily have to consider the reasons for

a change. We make this distinction primarily because it is our opinion that any

reasonable physical �le translator will have to be able to parse the EXPRESS

language, as well as the STEP physical �le. For this reason, the distinction is

important. Changes in a STEP �le due only to changes in the model should be

easier to process than those due to changes in the EXPRESS language, since

the latter will require modi�cations to the EXPRESS parser.

3 Codifying Changes in the Model

To translate existing �les e�ectively, we need some representation for the trans-

formation that is to be applied to them. Some interest has been expressed in

generating such a representation automatically, so we will address the possibility

of doing so.

3.1 An Example from Computer Language Translation

To make use of a familiar analogy, consider a typical compiler for a computer

language. Such a program makes a translation from one language (relatively)

easily understood by humans to another easily interpreted by the computer (i.e.

machine language). The translation is generally deterministic and unambiguous,

and is made in a well understood, well documented fashion. We can subdivide

such a translator into two parts: the parser, which recognizes constructs in

the higher-level source language, and the code generator which produces corre-

sponding machine language code. In practice, parsing is a very well understood,

almost automatic task, while code generation is somewhat more of an art form.

There exist a plethora of \parser generators" to take a speci�cation of the syntax

for a high level language and produce code that will e�ectively parse programs

written in that language. No such program exists to produce code generators

that is su�ciently powerful and general to be useful in real-life applications.

The reasons for this fact are unclear and subject to much debate; however,

it seems safe to say that while it is relatively easy to recognize the constructs

of a source language, it is not nearly so simple to specify the transformation we

must apply to that construct to produce the equivalent construct in the target

language. This task usually requires a signi�cant use of human intelligence.

3

block structured non-block structured

procedure :== | procedure :==

PROCEDURE id (var-list) | PROCEDURE id (var-list)

|

local-variables ; | local-variables ;

|

[procedure] |

|

BEGIN | BEGIN

|

statement-list ; | statement-list ;

|

END | END

Figure 1: Syntax For Block Structured and Non-Block Structured Procedure

Generally speaking, the problem derives from the fact that relatively small syn-

tactic changes can imply arbitrarily large semantic di�erences. A 'classical'

example can be seen in the attempt to translate a block structured language

into a non-block structured language (e.g. Pascal to C). The syntactic di�erence

is illustrated in Figure 1.

While our block structured example is not as robust as Pascal, which allows

for more than one procedure to be declared within a block, this example is su�-

cient for our purposes. The syntactic di�erence between these two constructs is

slight : we have only allowed for the possible nesting of a single procedure de�ni-

tion in the block structured case. On the other hand, the semantic implications

are considerable. In particular, to translate from the block structured language

into the non-block structured language, our transformation has to implement

the lexical scoping rules of the block structured language explicitly. What was

once a feature of the compiler has to be mapped out as a feature of the output

program. There is no way to quantify the di�culty this presents, but from the

author's own anecdotal experience this feature of Pascal is the single most dif-

�cult problem in translating from Pascal to C. The important point is that it

is quite di�cult for a human to devise a means of making this transformation,

and yet it is based on a very small syntactic di�erence.

4

3.2 An Example from STEP

To come a little bit closer to home, let us examine the problem of representing

enumeration values in STEP exchange �les. 3 In an early version of the exchange

�le mapping [ALTE], enumeration values were implemented as 0 based integers.

Thus the enumeration (RED, GREEN, BLUE) mapped to (0, 1, 2), and an

attribute of this type in a particular instance in a physical �le would have one

of these three integer values. Suppose that the model were changed to add the

color BLACK to this enumeration type. If we simply made the new type (RED,

GREEN, BLUE, BLACK) we would have to make no changes whatsoever in

existing physical �les, since they presumably only have entries values 0, 1, or

2 and these values still have the same semantic interpretation. However, if

the modeler decided to make the list (RED, BLACK, GREEN, BLUE), then

suddenly the transformation becomes more complex: now all attributes with

value 0 remain 0, those with 1 become 2, and those with 2 become 3. Any

program that is going to be able to handle the general problem of specifying

transformations between versions of a model will have to be able to handle this

case.

That may not seem to be much of a problem, but consider the following:

suppose we assume a later version of the speci�cation (e.g., the current ver-

sion, [VANM]) when we design our translator. This version implements the

same enumeration type above as .RED., .GREEN. or .BLUE. in a particular

instantiation of the type, so we wouldn't have the problem we described above.

However, if at some later point in time the standard reverted to the earlier ver-

sion of the physical �le format (and we can't assume that it won't and remain

completely general) then our translator would have to somehow be capable of

suddenly producing the transformation described in the preceding paragraph

without having had any a priori knowledge of such a situation. 4

3.3 Things Could be Even Worse

Upon consideration of the problem presented in the previous subsection, one

may well suggest that we can solve it by forbidding modelers from adding enu-

meration types in the middle of an enumeration list. This would solve the

present problem, but previously documented changes [YANG] suggest that the

above example is an overly simplistic case of a more general problem. When

the data modeler changes a STEP model, a complex transformation between

the old and new models may exist. Providing a general purpose solution that

could produce these transformations automatically appears quite di�cult; in-

deed, it seems that the problem would �rst require the de�nition of a complete

3While the current implementation of the physical �le may not require a solution to this
problem, a fully general translator should be able to handle this case.

4This particular problem may be surmountable by requiring changes in the physical �le

structure to provide an algorithm that could produce the appropriate transformation when
required.

5

formal semantic speci�cation for both EXPRESS and the particular information

model. This is certainly a desirable goal, but the e�ort involved is not justi�ed

by the purposes of the current project alone. More time would be spent in the

de�nition of the formal semantics than could possibly be saved by being able to

translate the data automatically.

In summary, the hope for a program that could take any two versions of an

EXPRESS model and generate the transformations necessary to translate the

physical �les of one model into those of the other is unrealistic at this time.

This sort of solution, which we refer to as a completely general solution, may be

desirable, but it is not practical. A more reasonable design will be less robust,

in the sense that it will not be able to produce all the requisite transformations

automatically, but it may nonetheless be su�cient for our purposes.

4 What Can be Done

Assuming that we have abandoned hope for a fully general solution to the prob-

lem of translating physical �les, we can then consider 'partial' solutions. Such

solutions tend to be heuristic in nature; their proper design and implementa-

tion is heavily dependent upon the nature of the particular problem they are

intended to solve. Thus an empirical analysis of the types of translations to be

made and their relative frequencies is in order. To begin, we list the types of

motivating changes presented in section 2 and add some assertions regarding

the ease with which the resulting transformations can be handled.

1. Transformations resulting from the change in the format in physical �les

are relatively simple in general. Indeed, we will argue later that these

changes should properly be handled separately from transformations mo-

tivated by changes in the models, and that this approach both simpli�es

the resulting tools and makes them more powerful. Most of the changes

in this class are similar to the change in the representation of enumeration

values discussed above.

2. Transformations resulting from changes in the EXPRESS language itself

also tend to be relatively straightforward, although these changes may

result in signi�cant changes to the information models. The latter might

well have considerable impact on the contents of existing physical �les.

3. Transformations resulting from changes in the conceptual model may be

arbitrarily complex.

In the remainder of this section, we will focus on the �nal category, as it is

the most useful and the most interesting. A brief proposal for a solution to the

�rst category is presented in section 4.2. For the purposes of the current study,

we will assume that transformations motivated by changes to the EXPRESS

6

language will be dealt with as a special case of transformations resulting from

changes to the underlying information models.

A more careful analysis reveals that we can break the third group into cat-

egories, in descending order of frequency, as follows:

� Adding or Deleting an Attribute. This is by far the most common

change made to conceptual models, and is a very simple transformation

to either detect or specify. A slightly more di�cult case occurs when

the change is actually made to a supertype, in which case it must be

propagated to all subtypes instantiated in the physical �le.

� Attribute Shifts. Occasionally an attribute will be shifted to a new

position in an entity de�nition, or from one entity to another. One can

imagine a rather straightforward, but imperfect scheme, for detecting this

sort of change. Again, this should be a rather easy change to specify.

� Change of Type. While this can happen generally, the most common

and problematic changes involve aggregates. For example, the modeler

may want to change the cardinality of a set, or perhaps change a list to

a set. These changes can easily be detected, but the transformations are

not always easy to specify. For example, when changing an attribute from

a set to a list, we generally don't have enough information to produce a

properly ordered list.

� Complex Transformations. We include in this class those transforma-

tions not described above, with the understanding that there may exist

some 'simple' transformations that we have yet to enumerate. An earlier

study [YANG] provides a good example of a member of this class. In an

e�ort to remove redundant data, the ISO Integration Committee decided

to radically alter the structure and relationship of several entities. As

we have tried to show above, such transformations cannot generally be

detected, nor are they easily speci�ed.

Given this list, we see that the main problems come from a relatively small

but important class of changes. Except for those changes in the last category, it

may be possible to process EXPRESS model de�nitions automatically to detect

changes and even specify the appropriate transformations. Whether or not to

write a translator that tries to do the easy work is a major design decision.

4.1 Proposed Approach

In this section, we outline an approach to the construction of a translator which

can apply the transformations listed above to a particular physical �le. Whether

or not one decides to design a program to automatically detect certain classes of

transformations, the proposed translator will still require some means of speci-

fying the transformations to be made. That is, regardless of whether or not the

7

physical �le translator obtains its transformations from a program or a human is

largely irrelevant. Conceptually, a transformation detector will have to encode

the appropriate translation in some intermediate form, which is then interpreted

by the translator to alter the physical �le. If we make this intermediate form

explicit (i.e. external to the program), we then have a language with which to

specify transformations. The explicit design of such a language is advantageous

for several reasons, some of which are:

� A properly designed language can be used by humans to characterize trans-

formations too complex to determine automatically.

� The existence of an intermediate language would allow for fairly straight-

forward mergers of transformations detected automaticallywith those pro-

vided by humans. We can design a translator to read in a list of transfor-

mations and apply them independently of their source.

� The design and implementation of a transformation detector and the phys-

ical �le translator can proceed independently. The language which charac-

terizes the intermediate form serves as a complete interface speci�cation.

� A transformation language provides the modeler a means of unambigu-

ously specifying the intended relationship between instances under the

old model and those under the new.

On the basis of the above discussion, it seems reasonable that the �rst step

in the design of a physical �le transformation system is the design of an inter-

mediate language to represent the required transformations. We have already

provided an informal discussion of the requirements: we must be able to specify

the addition or deletion of an attribute, the shifting of an attribute from one

entity to another, and changes of type. More signi�cantly, we must provide the

data modeler a means for specifying the complex transformations which may

accompany changes in the conceptual model.

4.2 An Approach for Handling Changes in the Exchange

File Format

Assume that we have a speci�cation for data transformations in an intermediate

form. The translator will read in this speci�cation, and begin processing some

number of physical �les, one at a time, by reading them into a temporary

working form, applying the necessary transformations, and then writing them

back out in physical �le format. This last step requires a knowledge of what

the appropriate format is. Normally, this would just be the original format, but

in the case where the physical �le has changed, this could be the new format.

The design of the translator will have to anticipate such changes, so it should

be designed to take a physical �le format speci�cation as an input. This gives

8

us the two-fold advantage of being able to easily modify the translator to reect

changes in the physical �le format, and being able to easily map such changes

to the �les themselves.

This speci�cation of the physical �le format, which e�ectively describes the

target language of the translator is problematic. If su�ciently general, we should

be able to use this translator to translate from a STEP physical �le to any output

�le format. In particular, this would provide a convenient means of translating

STEP data into proprietary formats. However, inspection of some of the existing

proprietary formats for storing data indicates that a fully general solution to

this problem will not be simple. Moreover, there is the additional problem that

a STEP conceptual model is typically a superset of a proprietary format, so

an appropriate mapping may not always exist. For these reasons, we leave the

scope and requirements for this speci�cation an open issue.

4.3 Steps to a Solution

Based upon the above discussions, we can identify the tasks listed below. A

reasonable solution will approach these problems in the following order:

1. The design of an intermediate language for specifying transformations

between instances of di�erent versions of a conceptual model.

2. The design of a physical �le format speci�cation which can be used by the

translator to produce properly formatted output.

3. The design and implementation of a translator which can take intermedi-

ate form translations, a physical �le format speci�cation, and a physical

�le to produce an updated �le in the speci�ed format.

4. The design and implementation of a change detector which can automati-

cally detect many of the simple changes made to a model, such as attribute

shifts, additions or deletions and produce an intermediate form represen-

tation of the necessary translations.

5 Data Transformation Language

This section presents a preliminary description of the required operations for a

language to describe data transformations in STEP exchange working �les. It

then describes two possible syntactic representations for these operations.

5.1 Required Operations

Any language for specifying data transformations must provide the following

operations:

9

1. Entity Creation. New entities may be added to a model at any time, so

this facility must be included. Note that the full power of the EXPRESS

entity declaration must be supported.

2. Entity Deletion. While it may seem that modelers will rarely wish

to delete existing entities from a model, preferring instead to rename or

rede�ne existing entities, this operation should nonetheless be available.

3. Renaming an Entity. During the integration process in STEP, it is

likely that entities will be renamed, whether or not other aspects of their

de�nitions are changed.

4. Changing the Supertype/Subtype Status of an Entity. New sub-

types are frequently added to supertype entities. Other changes may not

be as commonly made to existing entities, but they should nonetheless be

supported.

5. Attribute Creation. The addition of a new attribute to an existing

entity is a very common change. Note that additions to supertypes must

naturally propagate to instantiated subtypes.

6. Attribute Deletion. A relatively common modi�cation.

7. Renaming an Attribute. It is not clear how often such an operation

would be used, but the design should support it.

8. Moving an Attribute Between Entities. It may be possible to ac-

complish this task by some combination of other operations, but this is a

common enough change that it should be supported directly.

9. Changing the Type of an Attribute. This is another frequent change.

Some changes are straightforward, others may be more complicated.

10. Copying Data. This can be at either the entity or attribute level.

11. Transforming Data. The translator should allow arbitrarily complex,

functional transformations of existing data to be made. This implies that

it must include an interpreter capable of evaluating any EXPRESS ex-

pression.

12. Scope Declarations. This is to allow for the possibility of disambiguat-

ing entities of the same name in di�erent schemas.

13. Assertions. This is the only item on this list which may be considered

optional. It may be desirable to allow the speci�cation of data constraints

to insure data integrity during the transformation.

10

5.2 Alternative Implementations

In this section, we present two alternative syntactic representations for the op-

erations listed above. In general, the appropriate representation is a matter of

taste. Since it should be fairly easy for a program to generate transformations

using whatever syntax we describe, a primary design consideration should be

ease of use by humans. The �rst alternative makes the desired operations ex-

plicit, while the second is roughly based upon existing EXPRESS constructs.

Thus the �rst may be easier for a neophyte to learn and understand, while the

latter may be more familiar to EXPRESS modelers.

In these descriptions, boldface indicates keywords of the proposed language,

while italics are intended to stand for uninstantiated instances of a general type.

Braces surrounding an object as in [option] represent optional constructs, and

a vertical bar, j, is used to separate alternatives, which may be grouped in

parentheses for clarity. An asterisk, *, indicates that a construct may appear

zero or more times.

5.2.1 Alternative A

The constructs for this alternative are:

1. create entity entity [type list] as attr list ;

Where type list allows for sub/supertype declarations and attr list

follows the EXPRESS conventions for entity attribute lists.

2. delete entity entity ;

3. rename entity entity to new entity ;

4. entity entity is (super j sub) type of entity ;

5. insert attr into entity [((after j before) attr2) j at pos] as type ;

Where type is a valid EXPRESS type description and pos is an inte-

ger specifying the absolute position of the attribute in the attribute

list of entity.

6. delete attribute attr from entity ;

7. rename attribute attr to new attr in entity ;

8. move attr from entity to new entity at pos ;

Where pos describes the attribute's position in the new attribute

list, as documented above for the insert statement.

9. type of attr in entity is type ;

Where type is a valid EXPRESS type declaration.

11

10. update entity set attr := expr[, attr n := expr n]* [where cond] ;

Where cond is a Boolean function of each entity-attribute instance.

Note that this construct can be used for both operations 10 and 11

of section 5.1. That is, it can be used to both copy and transform

data.

11. beginscope schema ;

Where schema is a valid schema within the current scope. The

universal scope is the default, and an active scope must be closed by

a matching endscope statement.

12. endscope ;

This closes the most recently opened scope.

5.2.2 Alternative B

The constructs in this implementation would be based upon the EXPRESS

map construct, with some extensions and modi�cations. Certain EXPRESS

constructs, such as entity declarations, could be used as currently implemented.

In this section we iterate through the required operations of section 5.1 and

show how they would be implemented.

1. Entity Creation This is done with an EXPRESS entity declaration.

2. Entity Deletion. This is implemented via an extension to the map

statement of EXPRESS as follows:

map entity null from old-entity ;

end entity ;

3. Renaming an Entity. This is also done with a variant of the map

statement:

map entity new-name from old-name ;

end entity ;

but this is ambiguous: should this imply that old-name is deleted, or

that new-name is just a copy of old-name? Under the current de�nition

of EXPRESS, the latter is the case. We must therefore either assume

that the old entity always is destroyed, or we need some construct to

indicate whether the old entity should be retained. For the purposes of

this document, we adopt the following convention: map will always imply

that its second entity argument is to be deleted, and we will use a di�erent

construct, copy, which will imply that the second entity argument is to

12

be retained unchanged. As much as possible, the syntax and semantics of

map and copy will otherwise be identical.

4. Changing the Supertype/Subtype Status of an Entity. In general,

when we map one entity to another, we want to keep the declaration of

the base entity. However, when a model changes, we may have to alter

these declarations. We can use map as follows:

map entity new from old supertype of (a, b);

end entity;

map entity new from old subtype of (a);

end entity;

map entity new from old subtype of (a) supertype of (b);

end entity;

The general syntax for the sub/supertype �eld is the same as that of

EXPRESS. Note that is the case where the destination is the same, map

and copy would have the same functionality.

5. Attribute Creation. Here we require an extension to the EXPRESS

version of map, as well as a rede�nition of some semantics. 5 In EX-

PRESS, a mapping is made of all named attributes, and those which are

not named explicitly are assumed to be deleted. We will make the opposite

assumption, i.e., that all the attributes of the second entity argument will

be mapped unchanged to the �rst unless it is explicitly stated otherwise.

Thus

map entity new from old ;

end entity;

works as expected and is only a special case of a more general principle.

We can then add an attribute by simply naming it and giving its type, as

in:

map entity new from old ;

new attribute : integer(7) ;

end entity ;

Note that this syntax does not allow us to specify the position at which

the attribute is to be added. This may not be su�cient.

5As we move further away from EXPRESS, it becomes clearer that perhaps map should
not be used, but rather some other name or construct. This document is not intended as a

�nal design. It was suggested that we examine usingmap; here we try to take its use as far
as we can.

13

6. Attribute Deletion. Given the assumption above, we can then delete

an attribute with the following constuct:

map entity new from old ;

attribute is deleted ;

end entity;

7. Renaming an Attribute. Again, we need to amend EXPRESS.

map entity new from old ;

attribute is renamed to new name ;

end entity;

8. Moving an Attribute Between Entities. Since this command a�ects

two entities at once, it doesn't mesh well with the map construct, which

generally a�ects only one entity (and deletes another). Thus we suggest

the syntax from the above alternative. That is:

move attr [, attr]* from entity 1 to entity 2 [at pos] ;

9. Changing the Type of an Attribute. Here we use the existing EX-

PRESS syntax:

map entity new from old ;

attribute : retype as type ;

end entity ;

10. CopyingData. We need to extend themap statement so that it can refer

to more than one entity. To do this, we allow attributes to be referenced

as entity.attribute in expressions and where clauses. For example,

map entity entity from entity ;

attribute := entity x.attribute y ;

where cond ;

end entity ;

Note that cond must be powerful enough to indicate which instances of

entity x correspond to which instances of entity. This is a di�cult problem,

and remains an open issue.

11. Transforming Data. We can use the same basic construct that we use

above, and extend it to allow arbitrary expressions on the right-hand side

of assignments. If we allow an optional type declaration to follow an

expression, we can increase the expressive power of the language. That is,

we can allow statements such as:

14

map entity new from old ;

attribute a := entity x.attribute y = PI : real(9) ;
attribute b := old.attribute b + old.attribute c ;

attribute c is deleted ;

end entity ;

12. Scope Declarations. Here we suggest the use of the beginscope and

endscope declarations introduced in Alternative A.

5.3 Comparing Alternatives

Briey, the primary advantage to the �rst alternative language is its simple

syntax. A person using this language to express transformations will �nd it

relatively easy to learn, understand and use. It may also be easier to generate

statements in this language automatically. At the very least, automatically

generated statements in this language should be more idiomatic. 6

The second alternative o�ers three advantages. First, it has more expressive

power. One statement in this language can accomplish much more than a single

statement of Alternative A. Secondly, since the language is based primarily upon

existing EXPRESS constructs, one can hope that it would be easily mastered

by a modeler seeking to describe conceptual model changes. Thirdly, from an

implementation standpoint, the lexical analyzer for this language is e�ectively

written already, as is a portion of the parser, since both can be borrowed from

existing EXPRESS compilers. There is less new language to parse, so the parser

should be simpler.

6 Summary

In the validation and testing environment of the National PDES Testbed, the

problem frequently arises of migrating test data from one version of a schema

to another, or from one version of the STEP exchange �le format speci�cation

to another. We have discussed various issues arising from this problem, and

have proposed an approach to a solution. The basic approach is to de�ne a

concrete intermediate representation for the changes between two schemas; this

representation can then be written by a modeler making changes to a model,

or might perhaps be automatically generated by some di�erence detection en-

gine. Changes in the exchange �le format can be dealt with by appropriate

manipulation of the output phase of the transformation engine.

Editor's note: After writing this paper, Mr. Kohout built an ex-

perimental system based on the EXPRESS-based (Alternative B)

6This is just another way of saying that an automatic transformation generator would tend

to �nd relatively simple changes, and generate simple statements. The greater expressive
power a�orded by Alternative B would most likely not be taken advantage of.

15

syntax. Although his time at NIST ran out before the system was

put into production, he was able to demonstrate the viability of his

approach. Future work at the Testbed on this problem will likely be

based on this approach.

7 References

[ALTE] Altemueller, J., ed., The STEP File Structure, Working Draft N241,

ISO TC184/SC4/WG1, February 1988.

[CLAR] Clark, S. N., An Introduction to The NIST PDES Toolkit, NISTIR

4336, National Institute of Standards and Technology, Gaithersburg, MD,

May 1990.

[FOWL] Fowler, J., ed., Proposal for the STEP Data Access Interface Speci�-

cation, Working Draft, ISO TC184/SC4/WG7, January 28, 1992.

[LIBE] Libes, D., and S. Clark, Fed-X: The NIST EXPRESS Parser, NIS-

TIR, National Institute of Standards and Technology, Gaithersburg, MD,

forthcoming.

[MASO] Mason, H., ed., ISO 10303 Industrial Automation Systems { Product

Data Representation and Exchange { Part 1: Overview and Fundamental

Principles, Working Draft N43, ISO TC184/SC4/WGPMAG, October 7,

1991.

[MORR] Morris, K. C., Architecture for the Validation Testing System, NIS-

TIR 4742, National Institute of Standards and Technology, Gaithersburg,

MD, December, 1991.

[SPIB] Spiby, P., ed., ISO 10303 Industrial Automation Systems { Product

Data Representation and Exchange - Part 11: The EXPRESS Language

Reference Manual, Committee Draft N14, ISO TC184/SC4, April 29,

1991.

[VANM] Van Maanen, J., ed., ISO 10303 Industrial Automation Systems {

Product Data Representation and Exchange - Part 21: Clear Text Encod-

ing of the Exchange Structure, Committee Draft, ISO TC184/SC4, March

12, 1991.

[YANG] Yang, Y., IPO Integration Committee and SG7 Joint Meeting Min-

utes 6 June 90, June 21, 1990.

16

